

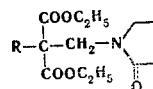
SYNTHESIS OF NEW PYRROLIDONE DERIVATIVES.

I. THE REACTION OF N-CHLOROMETHYL PYRROLIDONE WITH MALONIC AND MONOSUBSTITUTED MALONIC ESTERS

É. G. Mesropyan, Yu. A. Buniatyan,
and M. T. Dangyan

UDC 547.476.1'743.1

Reaction of N-chloromethylpyrrolidone with the sodio-derivatives of malonic and substituted malonic esters in dry ether has given the diethyl esters of the corresponding 2-oxopyrrolidinomethylmalonic acids.


In order to synthesize organic compounds containing the lactam ring, the reaction of the diethyl esters of malonic, γ -chlorocrotylmalonic, and monoalkylmalonic acids with N-chloromethylpyrrolidine has been examined [1].

Reaction of N-chloromethylpyrrolidone with monosubstituted diethyl malonates in the presence of metallic sodium in dry ether affords esters of alkyl-(2-oxopyrrolidinomethyl)malonic acids. Diethyl malonate itself gives derivatives of mono- and bis-(2-oxopyrrolidinomethyl)malonic acid. In absolute alcohol, yields were much lower.

EXPERIMENTAL

Reaction of N-Chloromethylpyrrolidone with Diethyl Malonate. To 10.38 g (0.45 g-atom) of finely-divided sodium in 250 ml of dry ether was added slowly with stirring and cooling 72.3 g (0.45 mole) of malonic ester. The mixture was heated at 45–50° until the sodium had dissolved completely. N-Chloromethylpyrrolidone (60.3 g, 0.45 mole) was then added with stirring and cooling. The mixture was heated for 4 h, and kept for a day at room temperature. The resulting salt was dissolved in water, and the organic layer was separated and dried over anhydrous magnesium sulfate. Unreacted diethyl malonate (24.1 g) was distilled off, followed by 39.2 g of diethyl 2-oxopyrrolidinomethylmalonate (50.7%), bp 161–164° (4 mm);

TABLE 1

R	Bp, °C (press., mm)	n_D^{20}	d_4^{20}	MR _D		Molecular formula	N, %		Yield, %
				Found	Calculated		Found	Calculated	
<i>n</i> -C ₈ H ₇	176 (1.5)	1.4675	1.0867	76.50	76.35	C ₁₅ H ₂₅ O ₅ N	4.52	4.68	75
<i>n</i> -C ₄ H ₉	170–176 (1)	1.4660	1.0700	80.99	81.17	C ₁₆ H ₂₇ O ₅ N	4.50	4.49	43
<i>i</i> -C ₅ H ₁₁	196–203 (1)	1.4650	1.0585	85.37	85.66	C ₁₇ H ₂₉ O ₅ N	4.20	4.28	79
CH ₃ Cl=CHCH ₂	199–202 (2)	1.4830	1.1473	85.01	85.55	C ₁₆ H ₁₆ ClO ₆ N*	4.36	4.05	89

* Found: Cl 10.05%. Calculated: Cl 10.27%.

Erevan State University. Translated from Khimiya Geterotsiklichesikh Soedinenii, No. 9, pp. 1201–1202, September, 1970. Original article submitted November 19, 1970.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

n_D^{20} 1.4655; d_4^{20} 1.1354. Found: C 55.96; H 7.52; N 5.00%; MR_D 62.62. C₁₂H₁₉NO₅. Calculated: C 56.03; H 7.39%; N 5.44%; MR_D 62.69. The residue was an extremely viscous substance which crystallized. It was diethyl bis-(2-oxopyrrolidinomethyl)malonate, mp 57° (from benzene). Yield 27.8 g (26.4%). Found: C 57.3; H 7.12; N 8.36%. C₁₇H₂₆N₂O₆. Calculated: C 57.6; H 7.34; N 7.91%.

The diethyl esters of the substituted (2-oxopyrrolidinomethyl)malonic acids were obtained by analogous methods (see Table 1).

LITERATURE CITED

1. F. P. Sidel'kovskaya, M. G. Zelenskaya, and M. F. Shostakovskii, Izv. AN USSR, OKhN, 901 (1959).